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Extrema of Functions,

Definition 52 - .
Let D C R"and f: D — R be a function.
o The set D is said to be convex if every two points z,y € D, the
line segment L(x,y) < D.

e The function f is said to be convex on a convex set D if for any
z,y € D and for any
bE [0,1), 1 (L—t)e +ty) < (1 6)f(2) + tfw).

e The function f is said to be concave on a convex set D if for any

z,y € D and for any
te.[0,1], ({1 —t)z+ty) Z(L=t)f (@) +tf(y):

Theorem 53 : :

Let D'C R™ be a conver set and f: D — R be a C? function. The
function f is a conver function on D if and only if for any x € D, for - © Lagrange Multipliers
any k= 1,2,...,n, the kth principal minor of the Hessian Hy(x) > 0.
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Extrema of Functions of Several Variables

£

‘Theorem 55

Let f,g1,....91: D — R be C! functions where D C R™ is open and
k < n. Suppose there is an a € D such that

Theorem 54 o | : afil;(a) fiii (a)
If f - D= R is a convez function on a conver set D and f(a) is a localgf det : - # 0.
minimum then f(a) is the global minimum on D. L Qg_l(a) o Qgi(a)
If f: D = R is a concave function on a convez set D and f(a) is a i o AN

local maximum then f(a) is the global mazimum on D. , If f(a) is local extremum of f subject to the constraints g;(x) = ¢; for
’ S ’ T t=1,2,...,k, then there exist scalars Ai,..., A, (called Lagrange
Multipliers) such that

: k
V(@) + Y AiVaia) = 0.
=1
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Theorem 46 (A necessar - condition for. extremum)

]f [ has a local extremum at a on an open region D, then a is a cmtzcal
point of f.

That is, a critical point does not yield a local extremum.

\
i
|
J
i’ Note that the converse of the theorem above is not true in general.
{
\

DLpartment of Fonndation Year::

Definition 47 ‘(Quadratxc form) v

Let b;; € R such that by = by; and h = (hq,. .., hy) € R,
O A quadratic form in Aj,...,h, is a function defined by
n n
Q(hl, fEaly hn) = Z Z bijhih]’,

i=1 j=1

This quadratic form can be written in term of matrices as

bii ... bin h1
Q) =(h1... hy) : r g : = h'Bh
‘ b’nl v b’rm hn
where h* = ( hy Ry, )-and B = (bij)nxn is a symmetric
matrix.

O T'he quadratic form @ (and also symmetric matrix ) is said to be
positive definite if Q(k) > 0 for all 1 # 0 and negative

definite il Q(h) < 0 for all b # 0.
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nctions of Several Variabl

Theorem 48 . . : i . o]
Let A = (aij)nxn be a symmetric matriz. Then the matriz A is positive
definite if and only if all kth principal minors Ay > 0 for
fe= 1,200 o Tl

Theorem 49 : ) .
LetA = (ai)nxn be a symmetmc matrm Then A is posztwe deﬁmte zf

and only-if it can be reduced to upper triangular form using only
elementary row operations I; ;(A) and the diagonal elements of
resultzng matmw are greater than zero. ;
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‘Extrema of Functions of Several Va1 iables

Theorem 50

Let D C R™ be. open and il D SR be a functwn FIf all Sécond: order
partial derivatives of f exist at a € D and d® f,(h) > 0 for all h # 0,
then there is a A > 0 such that d(z)fa( > )\HTI|2 forallz e R".

Theorem 51 (The Second Derivative Test)

Let D < R™ be open containing a and f : D — R satzsfy Vila)=0. |
Suppose further that all second-order partial derwatwes off e:mst on D} E
and continuous. at a. ' -

o If the quadratic form Q = d? fa(h) 18 poeztzve deﬁmte then f(a)
s a local minimum of f.
o If the quadratic form Q = d® f,(h) is negative deﬁmte then f(a)
s a local mazimum of f.
o If the quadratic form Q) = d@ f,(h) takes on both posztwe and
negative values for b € R™, then a is a saddle point of f
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© Extrema of Functions of Several Variables
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Extrema of Functions of Several Variables

Let D C R® f: D — R be a function and ¢ € D.
o f(a)is called a local minimum of f if there is an 7 > 0 such that |
fla) < f(z)for all x € By(a).N.D.

° f (a) is called a local maximum of f if there is an r > 0 such
that f(a) > f(z) for all @ € B,(a) N D.

o f(a) is called a local extremum of f if there f(a) is a local
minimum or a local maximum of f.

o f(a) is called a global minimum ofj on D if f(a) < f(z) for all

x.e D,
o f(a) is called a global maximum of f on D if f (a) >

f(x) for all ’

[

zeD.
° f (a) is called a global extremum of f on D it fla)is a global
minimum or a global maximum of f.
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Theorem 42 v . -
If D C R" is closed and bounded and f: D — R is a continuous
function, then f must have both a global mazimum and a global

minimum, somewhere on D.

| Theorem 43 i '
Let D CR™ be open and f: D — v R be a functwn If the ﬁrst order
partial derivatives of f exist at a € D and f(a) is a local extremum of

f, then V f(a) = 0.
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Extrema of Functions of Several Variables

Definition 44
Let f be defined on an open region D contalnmg a. The point a is a
critical point of f if one of the following is true.

Q@ fi(a)=0foralli=12,.
o fr, ( ) does not exist for some ¢ € {1 |

Definition 45

is called a saddle point of f if Vf(a) =0 and there is an ro > 0 such
that given any 0 < p < g there are points z,y € B »(a) which satisfy

f(@) < fla) < f(y)-

Let D ¢ R™ be open and f : D — R be dlffercntxable at.a-€ D. Then'a
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“Tangent planes and normal lines’

So far, you have represented surfaces in space primarily by equations of
the form

z = f(z,y)
In the development to follow, however, it is convenient to use the more

general representation F(z,y, z) = 0. For a surface S given by
z = f(z,vy), you can convert to the general form by defining F as

F(z,y,z) = f(z,y) — =

Because f(z,y) — z = 0, you can consider S to be the level surface of F

given by
Fle,9,2)=0.
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Tangent planes‘ and normal lines

Let S be a surface given by
F(z,y,z) = 0 and let P(zg,%0,20)
be a point on S. Let C be a curve S
on through P that is defined by the
vector-valued function

P
i Surface S
IF(x,y, )=01

r(t) = z(t)i+ y(t)j + z(t)k
Then, for all ¢
F(a(t), y(t), (1) = 0.

If F is differentiable and 2/(t), y'(t)
and 2/(t) all exist, then we have

F'() = Il 1 z)w’(t)—FFy(w,y,z)y'(t)+Fz(a:,y,z)z'(t) =0
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Tangent planes and normal lincs
At point P(zg,yo, 20), the equivalent vector form is

V F(xo, Yo, z).x'(to) = 0.

This result means that the gradient at P is orthogonal to the tangent
vector of every curve on S through P. So, all tangent lines on S lie in a
plane that is normal to VF(zo,0,20) and contains P, as shown in the
Figure.
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Theorem 37 (Taylor’s formula)

Let D.C R™ be open, a,z € D, and f : D—> R .beqa functin and
suppose that the partial derwatives of f orderk — 1 exist on D. If each
(P o l)th ov*der partzal de'rwatwe of f 18 dzjferentmble on D and the
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‘Deﬁmtlon ‘29 -

mxmn matrlx Whose (z 3) entry is

epaxtment of Foundation Yeal

&EJ

-8-]— That 1s Df,_j '

“Differential fo Vector-Valued Functions

Theorem31 _
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Theorem 24

Department of Foundation Year

b4 .
Maximum

increase

& . f(x, )

igure: The maximum incregase of f in
the direction of V f(z,y) in the
zy-plane

Gradlent
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Differential fo Vector—Valued Functlons

ﬁnitio 2

Department of Foundation Year ; ITC

35 / 62




Let y -
wint 1,2, .., n. If each 1, 1 ,2
of m 'Um"ia()l(zs t1,t2, .. '
2l and

lity, ..

Chain rules for functions-of several variables -

“Contents

S(x1, 29, ., 2,), where f is dzﬁerentzable functwn of ' &y

@ Directional Derivatives
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Note that if we denote the increments

h,‘:Aa:i;:da:,’, i:1,2,...,7b

(called the differential of the independent variable z;,7 = 1,2;..
respectively), then

of
Oy

if = %(a)da:l 2 %(a)dwz T
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7

v-ﬂ-'-'leferentlals . -

and the increment Af = f(a + Az) — f(a) of dependent variable fis
of 0

Af = go-@boi+ -+ 2L @)g, + o (a).

If Az; = dz,,i = 1,2,...,n are small enough tending to zero, then A f
can be approximated by df

Theorem 17

zﬁ‘eren table at a, _,then it is contmuous ata

J R P L mar s ey
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Deﬁmtlon 12 .

e A functlon f D ¢ R? = R 1S Sdld to be of class‘ ok
partlal denvatwes of order < k are contlnuous
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Partial Derivatives

of
e Note that if the function if —af has a partial derivative with
oy

respect to x;, we denote the p;,rtial derivative by
o [90f 0? f o §
dx; \ Oz; = 9z.01; 58y sl

@ The function obtained by differentiating f successively with
respect to x;,, Ty,, ... x;, at x is denoted by

B

oFf

&vir(?a:ir_l Ty

Eron Joi wiy.ws,  where iy 444 =k
i1

It is called a kth-order partial derivative of f.
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COHtlHUltY

Theorem 9
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© Partial Derivatives
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& fxi% Jo(a) + e
fh( )g(w) ’f(a:)qh‘(a,)‘p
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L mut ofa Flihétion of Several Variables

Definition 3

Let f:DCR* > R™andqe D Then we say 'chat the hrmt of f(x)
equalb L asx approaches a, ertten as’

i f ()=

L.

0 there éxists a 5 > 0 such that

1)~ Dl < *whenever v_nx*’—*éfﬁ, '

’ Theorem 4
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]1mgﬁm f( ),_- I/
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Figure: Interior point
Figure: Boundary point

e A region R is open if it is a subset of its interior. That is, R C R
e A region R is closed if it contains its entire boundary. That is,
ORCR.

@ The closure of R is denoted by R and defined by
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Level curve, level surface and leve
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' Exampleof level Curves

Figure: Level curves show the lines of Iigure: Level curves show the lines of
equal pressure (isobars) measured in - equal temperature (isotherms)
millibars measured in degree Fahrenheit.
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e In this study we use only Euclidean Norm, that is if
T = (Z1,Z2,...,%,) € R?, then norm of z is defined by

n 1/2
i=1

o Ifz=(z1,22,...,2n),y = (W1,%2,-..,Ys) € R?, then norm of the
difference z and y (or Euclidean distance between z and Y)
is defined by

[ n 1/2
|z —yll = [Z(It - yi)ﬂ :
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e Let zp € R™ and let € > 0. A neighbourhood or
e-neighbourhood about xy is denoted and defined by

Ne(wo) = {z € R™ : ||z — 0| < €}

= e

o A point xg in R is called an interior point of R if there exists an
e-neighbourhood about xq that lies entirely in R. That is,

zg € Ne(zo) C R.

The interior of R, denoted by R or int(R), is the set of all interior
points of R.

e A point xp is a boundary point of R if every neighbourhood
about x( contains points inside R and points outside R.

Ve>0: N(zo) NR#D and N (zo)N R £

The boundary of R, denoted by OR or b(R), is the set of all
boundary points of R. Sy e phe 36 5
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Theorem 56 (Second de1 lvanve test for’ constramed local
extremum) o » et e

j? g] ] *®2 g
Denote (A;x) and so-called Lagrange function

L z) = f(a) - Zf” Ai (9i(x) — ¢;). Suppose there is an 2 € D such

that

g %

Z)ﬂ (a) - 5%:(@)

det ) : £}
0y, s
le(a) s 5%’;(@)
32 4 .

wlvere: gy == df,djm (@) =12 dz gbr (a). Let d; be jth principal minor

of HL(A;a).
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Lagrange Multlphers i

g D — R be C-‘2 functions whe'r’e D C R™ is open and k < n. ¢

1. R. Larson and B. Edwards, Multivariable Calculus, Ninth Edition,
Brooks/Cole, Cengage Learning, 2010.

2. 5. T. TAN, Multivartable Calculus, Brooks/Cole, Cengage
Learning, 2010.
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We calculate the sequence of n ~ k numbers

(s) 0 (1) %doprr, (1) *dogra, - ., (=1)*dyin

@ If the sequence in (s) consists entirely of positive numbers, then

f(a) is a local minimum subject to the constraints g;z) = ¢; for all

R

‘ :
@ If the sequence in (s) begin with a negative number and thereafter :

alternates in sign, then f(a) is a local maximum subject to the
constraints g;(z) = ¢; for all i'=1,2,. ., k.

@ If neither case 1 nor case 2 holds, then f has a constrained saddle

Department of Foundation Year e ITC 61./.62

_




